Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 82, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365768

RESUMO

There are multiple published data showing that excessive oxidative stress contributes to bone loss and even bone tissue damage, and it is also correlated with the pathophysiology of bone degenerative diseases, including osteoporosis (OP). Garcinol, a polyisoprenylated benzophenone derivative, has been recently established as an anti-oxidant agent. However, it remains elusive whether Garcinol protects bone marrow mesenchymal stem cells (BMSCs) and bone tissue from oxidative stress-induced damage. Here, we explored the potential effects of Garcinol supplementation in ameliorating oxidative stimulation-induced dysfunction of BMSCs and bone loss in osteoporotic mice. In this study, we verified that Garcinol exerted potent protective functions in the hydrogen peroxide (H2O2)-induced excessive oxidative stress and dysfunction of BMSCs. Besides, Garcinol was also identified to improve the reduced bone mass and abnormal lineage commitment of BMSCs in the condition of OP by suppressing the oxidative stimulation. Subsequent analysis revealed that nuclear factor erythroid 2-related factor 2 (NRF2) might be a key regulator in the sheltering effects of Garcinol on the H2O2-regulated oxidative stress, and the protective functions of Garcinol was mediated by NRF2-antioxidant signaling. Collectively, Garcinol prevented oxidative stress-related BMSC damage and bone loss through the NRF2-antioxidant signaling, which suggested the promising therapeutic values of Garcinol in the treatment of oxidative stress-related bone loss. Therefore, Garcinol might contribute to treating OP.

2.
Ann Transl Med ; 10(2): 37, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35282137

RESUMO

Background: MicroRNAs (miRNAs) play a vital role in the bone development and bone regeneration. In this study, we investigated the effects of miR-26a in osteoblasts and fractures. Methods: Human osteoblasts were cultured and used for analysis. To identify differential miRNAs in blood samples from patients with fractures and healthy controls, quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed. Human osteoblasts were transfected with miR-26a mimics, miR-26a inhibitor, or their corresponding negative controls (NCs), respectively. MTT assay was performed to identify the effects of miR-26a on the cell viability of osteoblasts. EdU staining was applied to detect the proliferation of osteoblasts. Trypan blue staining was utilized to analyze the effects of miR-26a on the cell death of osteoblasts. Terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) staining was used to detect apoptotic osteoblasts. Alizarin red S (ARS) staining and qRT-PCR analysis were utilized to measure the mineralized nodule formation to evaluate the bone formation of osteoblasts. Dual luciferase reporter assay and western blot analysis were performed to detect the relationship between miR-26a and its target gene. Results: The results of qRT-PCR analysis identified miR-26a as our miRNA of interest and indicated that miR-26a was significantly decreased in patients with fractures. Overexpression of miR-26a significantly increased the cell viability and proliferation of osteoblasts. An increase in miR-26a reduced the cell death and apoptosis of osteoblasts, and promoted the osteoblastic activity and mineralized nodule formation. Dual luciferase reporter assay, qRT-PCR and western blot analysis showed that miR-26a could negatively regulate the expression of phosphatase and tensin homolog (PTEN). Conclusions: MiR-26a promoted new bone regeneration via regulating the functions of osteoblasts by targeting its target gene PTEN. Therefore, we propose that targeting miR-26a may be a novel therapeutic method for bone regeneration and treating fractures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...